1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
use crate::algorithms::fo_logic::fol_tree::{FolTreeNode, NodeType};
use crate::algorithms::fo_logic::operator_enums::*;
use biodivine_lib_param_bn::symbolic_async_graph::{SymbolicAsyncGraph, SymbolicContext};
use biodivine_lib_param_bn::BooleanNetwork;
use regex::Regex;
use std::collections::{HashMap, HashSet};
/// Compute the set of all uniquely named FOL variables in the formula tree.
///
/// Variable names are collected from the quantifiers `exists` and `forall` (which is sufficient,
/// as the formula must not contain free variables).
pub fn collect_unique_fol_vars(formula_tree: &FolTreeNode) -> HashSet<String> {
collect_unique_fol_vars_recursive(formula_tree, HashSet::new())
}
fn collect_unique_fol_vars_recursive(
formula_tree: &FolTreeNode,
mut seen_vars: HashSet<String>,
) -> HashSet<String> {
match &formula_tree.node_type {
NodeType::Terminal(_) => {}
NodeType::Unary(_, child) => {
seen_vars.extend(collect_unique_fol_vars_recursive(
child.as_ref(),
seen_vars.clone(),
));
}
NodeType::Binary(_, left, right) => {
seen_vars.extend(collect_unique_fol_vars_recursive(
left.as_ref(),
seen_vars.clone(),
));
seen_vars.extend(collect_unique_fol_vars_recursive(
right.as_ref(),
seen_vars.clone(),
));
}
// collect variables from quantifier nodes (bind, exists, forall)
NodeType::Quantifier(_, var_name, child) => {
seen_vars.insert(var_name.clone()); // we do not care whether insert is successful
seen_vars.extend(collect_unique_fol_vars_recursive(
child.as_ref(),
seen_vars.clone(),
));
}
NodeType::Function(_, child_nodes) => {
for child in child_nodes {
seen_vars.extend(collect_unique_fol_vars_recursive(
child.as_ref(),
seen_vars.clone(),
));
}
}
}
seen_vars
}
/// Compute the set of all unique function symbols (with arities) in the formula tree.
///
/// If some function symbol is used with more than one arity, return error.
pub fn collect_unique_fn_symbols(
formula_tree: &FolTreeNode,
) -> Result<HashMap<String, usize>, String> {
let mut seen_symbols = HashMap::new();
collect_unique_fn_symbols_recursive(formula_tree, &mut seen_symbols)?;
Ok(seen_symbols)
}
fn collect_unique_fn_symbols_recursive(
formula_tree: &FolTreeNode,
seen_symbols: &mut HashMap<String, usize>,
) -> Result<(), String> {
match &formula_tree.node_type {
NodeType::Terminal(_) => {}
NodeType::Unary(_, child) => {
collect_unique_fn_symbols_recursive(child.as_ref(), seen_symbols)?;
}
NodeType::Binary(_, left, right) => {
collect_unique_fn_symbols_recursive(left.as_ref(), seen_symbols)?;
collect_unique_fn_symbols_recursive(right.as_ref(), seen_symbols)?;
}
// collect variables from quantifier nodes (bind, exists, forall)
NodeType::Quantifier(_, _, child) => {
collect_unique_fn_symbols_recursive(child.as_ref(), seen_symbols)?;
}
NodeType::Function(fn_symbol, child_nodes) => {
let arity = child_nodes.len();
let name = fn_symbol.name.clone();
if let Some(existing_arity) = seen_symbols.get(&name) {
// if the symbol is already saved, check it has the same arity
if *existing_arity != arity {
return Err(format!(
"Symbol {} is used with two different arities: {} and {}",
name, arity, existing_arity
));
}
} else {
// if the symbol is not saved yet, save it
seen_symbols.insert(name, arity);
}
for child in child_nodes {
collect_unique_fn_symbols_recursive(child.as_ref(), seen_symbols)?;
}
}
}
Ok(())
}
/// Checks that all FOL variables in the formula's syntactic tree are quantified (exactly once),
/// and renames these variables to a pseudo-canonical form that will be used in BDDs.
/// It renames as many variables as possible to identical names, without affecting the semantics.
///
/// The format of variable names is given by how [SymbolicContext::with_extra_state_variables]
/// creates new extra variables. Basically, we choose a name of one BN variable (`var_core_name`),
/// and it is used as a base for extra variables `{var_base_name}_extra_{index}`.
pub fn validate_and_rename_vars(
orig_tree: FolTreeNode,
var_base_name: &str,
) -> Result<FolTreeNode, String> {
validate_and_rename_recursive(orig_tree, var_base_name, HashMap::new(), 0)
}
/// Checks that all FOL variables in the formula's syntactic tree are quantified (exactly once),
/// and renames these variables to a pseudo-canonical form that will be used in BDDs.
/// It renames as many variables as possible to identical names, without affecting the semantics.
///
/// The format of variable names is given by how [SymbolicContext::with_extra_state_variables]
/// creates new extra variables. Basically, we choose a name of one BN variable (`var_core_name`),
/// and it is used as a base for extra variables `{var_base_name}_extra_{index}`.
fn validate_and_rename_recursive(
orig_tree: FolTreeNode,
var_base_name: &str,
mut renaming_map: HashMap<String, String>,
index: u32,
) -> Result<FolTreeNode, String> {
// If we find quantifier, we add new var-name to rename_dict and increment index.
// After we leave the quantifier's sub-formula, we remove its variable from rename_dict.
// When we find terminal node with free variable, we rename it using the rename mapping.
return match orig_tree.node_type {
// rename vars in terminal state-var nodes
NodeType::Terminal(ref atom) => match atom {
Atom::Var(name) => {
// check that variable is not free (it must be already present in mapping dict)
if !renaming_map.contains_key(name.as_str()) {
return Err(format!("Variable {name} is free."));
}
let renamed_var = renaming_map.get(name.as_str()).unwrap();
Ok(FolTreeNode::mk_variable(renamed_var))
}
// constants are always automatically fine
_ => return Ok(orig_tree),
},
// just dive one level deeper for unary nodes, and rename string
NodeType::Unary(op, child) => {
let node = validate_and_rename_recursive(*child, var_base_name, renaming_map, index)?;
Ok(FolTreeNode::mk_unary(node, op))
}
// just dive deeper for binary nodes, and rename string
NodeType::Binary(op, left, right) => {
let node1 =
validate_and_rename_recursive(*left, var_base_name, renaming_map.clone(), index)?;
let node2 = validate_and_rename_recursive(*right, var_base_name, renaming_map, index)?;
Ok(FolTreeNode::mk_binary(node1, node2, op))
}
// quantifier nodes are more complicated
NodeType::Quantifier(op, var, child) => {
// check that var is not already quantified (we dont allow that)
if renaming_map.contains_key(var.as_str()) {
return Err(format!(
"Variable {var} is quantified several times in one sub-formula."
));
}
let new_var_name = format!("{var_base_name}_extra_{index}");
renaming_map.insert(var.clone(), new_var_name.clone());
// dive deeper, increment index
let child_node = validate_and_rename_recursive(
*child,
var_base_name,
renaming_map.clone(),
index + 1,
)?;
// rename the variable in the quantifier node itself
Ok(FolTreeNode::mk_quantifier(
child_node,
new_var_name.as_str(),
op,
))
}
// just dive one level deeper for function nodes and rename string
NodeType::Function(fn_symbol, child_nodes) => {
let name = fn_symbol.name.clone();
let is_update = fn_symbol.is_update_fn;
let mut new_children = Vec::new();
for child in child_nodes {
let new_child_node = validate_and_rename_recursive(
*child,
var_base_name,
renaming_map.clone(),
index,
)?;
new_children.push(new_child_node);
}
Ok(FolTreeNode::mk_function(&name, new_children, is_update))
}
};
}
/// For a given FOL variable name, get a base variable of the BN and offset that was used to add
/// it to the symbolic context.
///
/// This fn returns error if the var name format is wrong.
pub fn get_var_base_and_offset(var_name: &str) -> Result<(String, usize), String> {
// we must get the correct "extra" BDD variable from the name of the variable
let re = Regex::new(r"^(?P<network_variable>.+)_extra_(?P<i>\d+)$").unwrap();
if let Some(captures) = re.captures(var_name) {
let base_var_name = captures.name("network_variable").unwrap().as_str();
let offset: usize = captures.name("i").unwrap().as_str().parse().unwrap();
Ok((base_var_name.to_string(), offset))
} else {
Err(format!(
"The FOL variable name string `{var_name}` did not match the expected format."
))
}
}
/// If the provided function symbol corresponds to (implicit) update function for some
/// variable, get the variable's name.
/// Return Err if the symbol is not in format "f_VAR".
///
/// Note that function symbols can be either for (explicit) uninterpreted functions or
/// for (implicit) update functions. The update function symbol for variable A must be
/// in a form of "f_A".
///
/// Always expects valid `fn_symbol` name on input.
pub fn get_var_from_implicit(fn_symbol: &str) -> Result<String, String> {
let re = Regex::new(r"^f_(?P<network_variable>.+)$").unwrap();
if let Some(captures) = re.captures(fn_symbol) {
let var_name = captures.name("network_variable").unwrap().as_str();
Ok(var_name.to_string())
} else {
Err(format!(
" `{fn_symbol}` is not valid symbol for an update function."
))
}
}
/// Check if a given function symbol name corresponds to an (implicit) update function.
///
/// Note that function symbols can be either for (explicit) uninterpreted functions or
/// for (implicit) update functions. The update function symbol for variable A must be
/// in a form of "f_A".
///
/// Always expects valid `fn_symbol` name on input.
pub fn is_update_fn_symbol(fn_symbol: &str) -> bool {
// this checks the format (if it is Ok it's update fn; if it is Err it's uninterpreted)
get_var_from_implicit(fn_symbol).is_ok()
}
/// Compute a valid name for an "anonymous update function" of the corresponding variable.
///
/// TODO: currently does not double check if there are collisions with existing params
pub fn get_implicit_function_name(variable_name: &str) -> String {
format!("f_{}", variable_name)
}
/// Check that extended symbolic graph's BDD supports given extra variable.
pub fn check_fol_var_support(graph: &SymbolicAsyncGraph, var_name: &str) -> bool {
if let Ok((base_var_name, offset)) = get_var_base_and_offset(var_name) {
if let Some(base_var) = graph
.as_network()
.unwrap()
.as_graph()
.find_variable(&base_var_name)
{
let num_extra = graph
.symbolic_context()
.extra_state_variables(base_var)
.len();
return offset < num_extra;
}
return false;
}
false
}
/// Check that symbolic context supports given function symbol (parameter) of given arity.
pub fn check_fn_symbol_support(ctx: &SymbolicContext, fn_name: &str, arity: usize) -> bool {
if let Some(param) = ctx.find_network_parameter(fn_name) {
arity == ctx.get_network_parameter_arity(param) as usize
} else {
false
}
}
/// Check that BN has given variable, and that it has given number of regulators.
pub fn check_update_fn_support(bn: &BooleanNetwork, var_name: &str, num_regulators: usize) -> bool {
if let Some(var) = bn.as_graph().find_variable(var_name) {
num_regulators == bn.regulators(var).len()
} else {
false
}
}