1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
use crate::sketchbook::ids::{UninterpretedFnId, VarId};
use crate::sketchbook::model::{BinaryOp, ModelState, UninterpretedFn};
use biodivine_lib_param_bn::{BooleanNetwork, FnUpdate};
use serde::{Deserialize, Serialize};
use std::collections::HashSet;

/// Syntactic tree of a partially defined Boolean function.
/// This might specify an update function, or a partially defined uninterpreted fn.
#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
pub enum FnTree {
    /// A true/false constant.
    Const(bool),
    /// References a network variable.
    Var(VarId),
    /// References a "placeholder network variable" that corresponds to an argument of an uninterpreted fn.
    PlaceholderVar(VarId),
    /// References a network parameter (uninterpreted function).
    /// The variable list are the arguments of the function invocation.
    UninterpretedFn(UninterpretedFnId, Vec<FnTree>),
    /// Negation.
    Not(Box<FnTree>),
    /// Binary Boolean operation.
    Binary(BinaryOp, Box<FnTree>, Box<FnTree>),
}

/// A wrapper function for parsing update function formulas with extended error message.
/// See [FnUpdate::try_from_str] for details.
fn parse_update_fn_wrapper(
    expression: &str,
    bn_context: &BooleanNetwork,
) -> Result<FnUpdate, String> {
    let fn_update = FnUpdate::try_from_str(expression, bn_context)
        .map_err(|e| format!("Error during update function processing: {}", e))?;
    Ok(fn_update)
}

impl FnTree {
    /// Try to parse an update function from a string, taking IDs from the provided `ModelState`.
    ///
    /// `is_uninterpreted` specifies whether the expression represents an uninterpreted function,
    /// or an update function. This must be distinguished as update functions can contain network
    /// variables, but uninterpreted functions only utilize "unnamed" variables `var0`, `var1`, ...
    pub fn try_from_str(
        expression: &str,
        model: &ModelState,
        is_uninterpreted: Option<(&UninterpretedFnId, &UninterpretedFn)>,
    ) -> Result<FnTree, String> {
        let bn_context = if let Some((_, f)) = is_uninterpreted {
            model.to_fake_bn_with_params(f.get_arity())
        } else {
            model.to_empty_bn_with_params()
        };
        let fn_update = parse_update_fn_wrapper(expression, &bn_context)?;
        let fn_tree = Self::from_fn_update(fn_update, model, is_uninterpreted)?;
        Ok(fn_tree)
    }

    /// Convert this update function to a string.
    ///
    /// Currently, the transformation utilizes intermediate structs from [biodivine_lib_param_bn]
    /// library, and thus `model` is needed to provide context (regarding IDs).
    pub fn to_string(&self, model: &ModelState, is_uninterpreted: Option<usize>) -> String {
        let bn_context = if let Some(n) = is_uninterpreted {
            model.to_fake_bn_with_params(n)
        } else {
            model.to_empty_bn_with_params()
        };
        let fn_update = self.to_fn_update_recursive(&bn_context);
        fn_update.to_string(&bn_context)
    }

    /// Obtain the `FnTree` from a similar `FnUpdate` object of the [biodivine_lib_param_bn] library.
    /// The provided model gives context for variable and parameter IDs.
    fn from_fn_update(
        fn_update: FnUpdate,
        model: &ModelState,
        is_uninterpreted: Option<(&UninterpretedFnId, &UninterpretedFn)>,
    ) -> Result<FnTree, String> {
        if let Some((fn_id, f)) = is_uninterpreted {
            let bn_context = model.to_fake_bn_with_params(f.get_arity());
            Self::from_fn_update_recursive(fn_update, model, &bn_context, Some(fn_id))
        } else {
            let bn_context = model.to_empty_bn_with_params();
            Self::from_fn_update_recursive(fn_update, model, &bn_context, None)
        }
    }

    /// Recursively obtain the `FnTree` from a similar `FnUpdate` object of the [biodivine_lib_param_bn] library.
    /// The provided model and BN give context for variable and parameter IDs.
    fn from_fn_update_recursive(
        fn_update: FnUpdate,
        model: &ModelState,
        bn_context: &BooleanNetwork,
        is_uninterpreted: Option<&UninterpretedFnId>,
    ) -> Result<FnTree, String> {
        match fn_update {
            FnUpdate::Const(value) => Ok(FnTree::Const(value)),
            FnUpdate::Var(id) => {
                // in BN, the var's ID is a number and its name is a string (corresponding to variable ID here)
                let var_id_str = bn_context.get_variable_name(id);
                if is_uninterpreted.is_some() {
                    let var_id = model.get_placeholder_var_id(var_id_str)?;
                    Ok(FnTree::PlaceholderVar(var_id))
                } else {
                    let var_id = model.get_var_id(var_id_str)?;
                    Ok(FnTree::Var(var_id))
                }
            }
            FnUpdate::Not(inner) => {
                let inner_transformed =
                    Self::from_fn_update_recursive(*inner, model, bn_context, is_uninterpreted)?;
                Ok(FnTree::Not(Box::new(inner_transformed)))
            }
            FnUpdate::Binary(op, l, r) => {
                let binary_transformed = BinaryOp::from(op);
                let l_transformed =
                    Self::from_fn_update_recursive(*l, model, bn_context, is_uninterpreted)?;
                let r_transformed =
                    Self::from_fn_update_recursive(*r, model, bn_context, is_uninterpreted)?;
                Ok(FnTree::Binary(
                    binary_transformed,
                    Box::new(l_transformed),
                    Box::new(r_transformed),
                ))
            }
            FnUpdate::Param(id, args) => {
                let fn_id_str = bn_context[id].get_name();
                let fn_id = model.get_uninterpreted_fn_id(fn_id_str)?;

                // disallow recursive definition for uninterpreted fns (using a function symbol in its own expression)
                if let Some(fn_id_def) = is_uninterpreted {
                    if fn_id == *fn_id_def {
                        let msg = format!(
                            "An uninterpreted fn {fn_id} cannot be used in its own expression."
                        );
                        return Err(msg);
                    }
                }

                let args_transformed: Result<Vec<FnTree>, String> = args
                    .into_iter()
                    .map(|f| Self::from_fn_update_recursive(f, model, bn_context, is_uninterpreted))
                    .collect();
                Ok(FnTree::UninterpretedFn(fn_id, args_transformed?))
            }
        }
    }

    /// Recursively transform the `FnTree` to a similar `FnUpdate` object of the [biodivine_lib_param_bn] library.
    /// The provided BN gives context for variable and parameter IDs.
    pub(crate) fn to_fn_update_recursive(&self, bn_context: &BooleanNetwork) -> FnUpdate {
        match self {
            FnTree::Const(value) => FnUpdate::Const(*value),
            FnTree::Var(var_id) => {
                // in BN, the var's ID is a number and its name is a string (corresponding to variable ID here)
                let bn_var_id = bn_context
                    .as_graph()
                    .find_variable(var_id.as_str())
                    .unwrap();
                FnUpdate::Var(bn_var_id)
            }
            FnTree::PlaceholderVar(var_id) => {
                let bn_var_id = bn_context
                    .as_graph()
                    .find_variable(var_id.as_str())
                    .unwrap();
                FnUpdate::Var(bn_var_id)
            }
            FnTree::Not(inner) => {
                let inner_transformed = inner.to_fn_update_recursive(bn_context);
                FnUpdate::Not(Box::new(inner_transformed))
            }
            FnTree::Binary(op, l, r) => {
                let binary_transformed = op.to_lib_param_bn_version();
                let l_transformed = l.to_fn_update_recursive(bn_context);
                let r_transformed = r.to_fn_update_recursive(bn_context);
                FnUpdate::Binary(
                    binary_transformed,
                    Box::new(l_transformed),
                    Box::new(r_transformed),
                )
            }
            FnTree::UninterpretedFn(fn_id, args) => {
                let bn_param_id = bn_context.find_parameter(fn_id.as_str()).unwrap();
                let args_transformed: Vec<FnUpdate> = args
                    .iter()
                    .map(|f| f.to_fn_update_recursive(bn_context))
                    .collect();
                FnUpdate::Param(bn_param_id, args_transformed)
            }
        }
    }

    /// Return a set of all variables that are actually used in this function as arguments.
    ///
    /// Both valid `network variables` and `placeholder variables` are collected (note that
    /// these two variants can never happen to be in the same tree at the same time).
    pub fn collect_variables(&self) -> HashSet<VarId> {
        fn r_arguments(function: &FnTree, args: &mut HashSet<VarId>) {
            match function {
                FnTree::Const(_) => (),
                FnTree::Var(id) => {
                    args.insert(id.clone());
                }
                FnTree::PlaceholderVar(id) => {
                    args.insert(id.clone());
                }
                FnTree::UninterpretedFn(_, p_args) => {
                    for fun in p_args {
                        r_arguments(fun, args);
                    }
                }
                FnTree::Not(inner) => r_arguments(inner, args),
                FnTree::Binary(_, l, r) => {
                    r_arguments(l, args);
                    r_arguments(r, args);
                }
            };
        }
        let mut vars = HashSet::new();
        r_arguments(self, &mut vars);
        vars
    }

    /// Return a set of all uninterpreted functions (parameters) that are used in this function.
    pub fn collect_fn_symbols(&self) -> HashSet<UninterpretedFnId> {
        fn r_parameters(function: &FnTree, params: &mut HashSet<UninterpretedFnId>) {
            match function {
                FnTree::Const(_) => (),
                FnTree::Var(_) => (),
                FnTree::PlaceholderVar(_) => (),
                FnTree::UninterpretedFn(id, args) => {
                    params.insert(id.clone());
                    for fun in args {
                        r_parameters(fun, params);
                    }
                }
                FnTree::Not(inner) => r_parameters(inner, params),
                FnTree::Binary(_, l, r) => {
                    r_parameters(l, params);
                    r_parameters(r, params);
                }
            };
        }
        let mut params = HashSet::new();
        r_parameters(self, &mut params);
        params
    }

    /// Use this function as a template to create a new one, but substitute a given network
    /// variable's ID with a new one.
    ///
    /// This can only be used to substitute `network variables` (that appear in update functions),
    /// not placeholder variables (that appear in uninterpreted functions), since modifying the
    /// latter does not make that much sense.
    pub fn substitute_var(&self, old_id: &VarId, new_id: &VarId) -> FnTree {
        match self {
            FnTree::Const(_) => self.clone(),
            FnTree::Var(id) => {
                if id == old_id {
                    FnTree::Var(new_id.clone())
                } else {
                    self.clone()
                }
            }
            FnTree::PlaceholderVar(_) => self.clone(),
            FnTree::UninterpretedFn(id, args) => {
                let new_args = args
                    .iter()
                    .map(|it| it.substitute_var(old_id, new_id))
                    .collect::<Vec<_>>();
                FnTree::UninterpretedFn(id.clone(), new_args)
            }
            FnTree::Not(inner) => (*inner).substitute_var(old_id, new_id),
            FnTree::Binary(op, l, r) => FnTree::Binary(
                *op,
                Box::new((*l).substitute_var(old_id, new_id)),
                Box::new((*r).substitute_var(old_id, new_id)),
            ),
        }
    }

    /// Use this function as a template to create a new one, but substitute a given uninterpreted
    /// function's ID with a new one.
    pub fn substitute_fn_symbol(
        &self,
        old_id: &UninterpretedFnId,
        new_id: &UninterpretedFnId,
    ) -> FnTree {
        match self {
            FnTree::Const(_) => self.clone(),
            FnTree::Var(_) => self.clone(),
            FnTree::PlaceholderVar(_) => self.clone(),
            FnTree::UninterpretedFn(id, args) => {
                let new_args = args
                    .iter()
                    .map(|it| it.substitute_fn_symbol(old_id, new_id))
                    .collect::<Vec<_>>();
                if old_id == id {
                    FnTree::UninterpretedFn(new_id.clone(), new_args)
                } else {
                    FnTree::UninterpretedFn(id.clone(), new_args)
                }
            }
            FnTree::Not(inner) => (*inner).substitute_fn_symbol(old_id, new_id),
            FnTree::Binary(op, l, r) => FnTree::Binary(
                *op,
                Box::new((*l).substitute_fn_symbol(old_id, new_id)),
                Box::new((*r).substitute_fn_symbol(old_id, new_id)),
            ),
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::sketchbook::model::{FnTree, ModelState};
    use std::collections::HashSet;

    #[test]
    /// Test parsing of a valid update function's expression.
    fn test_valid_update_fn() {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 1)
            .unwrap();

        let expression = "a & (b | f(b))";
        let fn_tree = FnTree::try_from_str(expression, &model, None).unwrap();
        let processed_expression = fn_tree.to_string(&model, None);
        assert_eq!(processed_expression.as_str(), expression);
    }

    #[test]
    /// Test parsing of a valid uninterpreted function's expression.
    fn test_valid_uninterpreted_fn() {
        let mut model = ModelState::new_empty();
        let arity = 2;
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", arity)
            .unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("g", "g", arity)
            .unwrap();

        // this is a valid expression for function `g` (not for `f` though)
        let expression = "var0 & (var1 | f(var0, var0))";
        let fn_id = model.get_uninterpreted_fn_id("g").unwrap();
        let uninterpreted_fn = model.get_uninterpreted_fn(&fn_id).unwrap();
        let fn_tree =
            FnTree::try_from_str(expression, &model, Some((&fn_id, uninterpreted_fn))).unwrap();
        let processed_expression = fn_tree.to_string(&model, Some(arity));
        assert_eq!(processed_expression.as_str(), expression,);
    }

    #[test]
    /// Test parsing of several invalid update functions' expressions.
    fn test_invalid_update_fns() {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 2)
            .unwrap();

        // try using an invalid network variables
        let expression = "var0 & var1";
        let fn_tree = FnTree::try_from_str(expression, &model, None);
        assert!(fn_tree.is_err());

        // try using an invalid function symbol
        let expression = "a & (b | g(b))";
        let fn_tree = FnTree::try_from_str(expression, &model, None);
        assert!(fn_tree.is_err());

        // now try valid function symbol but with wrong arity
        let expression = "a & (b | f(b))";
        let fn_tree = FnTree::try_from_str(expression, &model, None);
        assert!(fn_tree.is_err());
    }

    #[test]
    /// Test parsing invalid uninterpreted functions' expressions.
    fn test_invalid_uninterpreted_fn() {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 1)
            .unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("g", "g", 2)
            .unwrap();

        // this would be a valid `update fn`, but not an uninterpreted fn (contains network variables)
        let expression = "a & (b | f(a))";
        let fn_id = model.get_uninterpreted_fn_id("g").unwrap();
        let uninterpreted_fn = model.get_uninterpreted_fn(&fn_id).unwrap();
        let fn_tree = FnTree::try_from_str(expression, &model, Some((&fn_id, uninterpreted_fn)));
        assert!(fn_tree.is_err());

        // this is an invalid expression for the uninterpreted fn `f`, as it is recursive
        let expression = "f(var0)";
        let fn_id = model.get_uninterpreted_fn_id("f").unwrap();
        let uninterpreted_fn = model.get_uninterpreted_fn(&fn_id).unwrap();
        let fn_tree = FnTree::try_from_str(expression, &model, Some((&fn_id, uninterpreted_fn)));
        assert!(fn_tree.is_err());

        // this has higher arity (f has arity 1)
        let expression = "var0 | var1";
        let fn_id = model.get_uninterpreted_fn_id("f").unwrap();
        let uninterpreted_fn = model.get_uninterpreted_fn(&fn_id).unwrap();
        let fn_tree = FnTree::try_from_str(expression, &model, Some((&fn_id, uninterpreted_fn)));
        assert!(fn_tree.is_err());
    }

    #[test]
    /// Test variable & uninterpreted fn substitution.
    fn test_substitution() {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 1)
            .unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("g", "g", 1)
            .unwrap();
        let a = model.get_var_id("a").unwrap();
        let b = model.get_var_id("b").unwrap();
        let f = model.get_uninterpreted_fn_id("f").unwrap();
        let g = model.get_uninterpreted_fn_id("g").unwrap();

        let fn_tree = FnTree::try_from_str("a & f(a)", &model, None).unwrap();

        // variable substitution
        let modified_tree = fn_tree.substitute_var(&a, &b);
        assert_eq!(modified_tree.to_string(&model, None), "b & f(b)");

        // function symbol substitution
        let modified_tree = fn_tree.substitute_fn_symbol(&f, &g);
        assert_eq!(modified_tree.to_string(&model, None), "a & g(a)");
    }

    #[test]
    /// Test collecting function symbols from function's expression.
    fn test_collect_fns() {
        let mut model = ModelState::new_from_vars(vec![("a", "a"), ("b", "b")]).unwrap();
        let fns = vec![("f", "f", 1), ("g", "g", 1), ("h", "h", 1)];
        model.add_multiple_uninterpreted_fns(fns).unwrap();
        let f = model.get_uninterpreted_fn_id("f").unwrap();
        let g = model.get_uninterpreted_fn_id("g").unwrap();

        let fn_tree = FnTree::try_from_str("a & f(a) | (g(b))", &model, None).unwrap();
        let collected_fns = fn_tree.collect_fn_symbols();
        let expected_fns = HashSet::from([f, g]);
        assert_eq!(expected_fns, collected_fns);
    }

    #[test]
    /// Test collecting variables from function's expression.
    fn test_collect_vars() {
        let variables = vec![("a", "a"), ("b", "b"), ("c", "c")];
        let mut model = ModelState::new_from_vars(variables).unwrap();
        model
            .add_empty_uninterpreted_fn_by_str("f", "f", 1)
            .unwrap();
        let a = model.get_var_id("a").unwrap();
        let b = model.get_var_id("b").unwrap();

        let fn_tree = FnTree::try_from_str("a & f(a) | (f(b))", &model, None).unwrap();
        let collected_vars = fn_tree.collect_variables();
        let expected_vars = HashSet::from([a, b]);
        assert_eq!(expected_vars, collected_vars);
    }
}